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Abstract

The nonlinear dynamics and stability of an empty above-ground steel tank is analyzed. The tank
considered is one of the typical configurations found in the Caribbean Islands and in the United States,
constructed with a cylindrical shell with variable thickness, and a conical roof supported by rafters. An
assumed space variation of pressures and a simplified deterministic model of time fluctuating pressures due
to wind are applied. The response is calculated by a finite element model of the tank using explicit
integration of the equations of motion for several pressure levels and period of fluctuations. The dynamic
buckling load is evaluated using the criterion due to Budiansky and Roth. The response is analyzed in the
time and in the frequency domain in order to recognize the nature of the problem. The results show that
pressure fluctuations do not induce resonance of the structure, so that simpler pressure models may be used
in practical analysis.
r 2004 Published by Elsevier Ltd.
1. Introduction

This paper investigates the nonlinear dynamic behavior and buckling of thin-walled steel tanks
with a fixed conical roof, under a deterministic simulation of wind pressures. Above-ground
storage tanks used in the oil and petrochemical industries are complex structures, frequently built
see front matter r 2004 Published by Elsevier Ltd.
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with a cylindrical body, a roof (either fixed or floating in the vertical direction), and an additional
structure to support the roof [1]. Typical designs of short tanks make use of very thin shells, with
relations between the radius of the cylinder and the wall thickness of the order of 1500–2000, and
height to diameter ratios of less than 0.5. Because of the slenderness of the shell, buckling has been
reported under high winds or hurricanes [2–4] and is a major constraint in the design.
Most studies reported in the technical literature of buckling of tanks under wind are restricted

to open tanks. In addition, the results consider a static analysis of the problem and disregard the
possibility of any dynamic effect due to wind [4,6–11]. However, wind gusts induce transient
vibrations in the shell during short times, which may eventually lead to dynamic buckling.
In the design of tanks in the United States, wind gusts of 3 s duration at 10m above ground

surface are considered, with wind velocities of 64m/s in the Eastern Coast and the Caribbean
islands [5]. Preliminary results using wind pressures in the form of a rectangular impulse with 3 s
duration seem to indicate that the dynamic effects are not significant in terms of the buckling
capacity of the shell. However, the question remains if pressure fluctuations within a 3 s impulse
may have a more damaging effect on the stability of the shell, and thus justify an empirical
investigation of such fluctuations in wind records. This paper addresses this question by means of
a nonlinear dynamic analysis of a specific tank with a conical roof.
The outline of the paper is as follows: the model of fluctuating pressure adopted in this work is

described in Section 2. Such a pressure model is applied to a theme structure described in Section
3. Section 4 deals with the dynamic response of the structure in the time domain, and in Section 5
the analysis is carried out in the frequency domain. Finally, conclusions are presented in Section 6.
2. Wind action

Typical wind records measure wind velocity every 3 s; however, no information is obtained for
intervals of less than 3 s, so that any fluctuations in the velocity (and in the consequent pressures
on the structure) are eliminated from the data. Such information is not relevant for most types of
structures, but for thin-walled tanks, it may be important in order to understand the nature of
buckling. From the information provided by wind records, it seems that an adequate load
configuration would be an impulsive pressure with 3 s duration. The only studies reported in the
literature including wind as an impulsive pressure on tanks consider a constant pressure during
3 s, or else a step variation [2,3].
At present, there are no extensive records regarding the values or the nature of pressure

fluctuations for periods less than 3 s, and the question remains open if it is necessary to obtain
such data because it may have a significant influence on the behavior of a tank structure. To
investigate the influence of such fluctuations on the dynamic response of the shell one can resort to
computer simulations. This paper reports studies using geometrically nonlinear dynamic analysis
under impulsive loads with fluctuations in the pressure. The pressure fluctuations within a gust
considered in this paper are shown in Fig. 1. There are two parameters involved in the definition
of such pressures: first, there is a pressure fluctuation amplitude, Pf, and second, there is a
fluctuation period, Tf. Non-dimensional quantities may be written as t ¼ Tf =T3 and Z ¼ Pf =P3;
where T3 ¼ 3 s and P3 is the average value of the wind gust pressure.
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Fig. 1. Model of pressure variation with time. Rectangular impulse with fluctuations. Tf, period of the fluctuation; T3,

3 s interval; Pf, fluctuation amplitude of the; P3, average amplitude pressure.
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To carry out the computations, a pressure distribution reported by MacDonald et al. [12],
which was obtained from wind-tunnel experiments, has been adopted. Fig. 2(a) shows contours of
the pressures used on the roof and Fig. 2(b) gives the pressure distribution used on the cylindrical
wall. The present model assumes that the pressures are applied simultaneously on the complete
surface of the structure. Of course, there are many uncertainties regarding the pressure
distribution, and at present, this is an open topic for research. It is not clear how several factors
influence the wind pressures in real tanks, such as topographic effects, roughness of the terrain,
interaction with other tanks, and others. The present investigation considers pressures on an
isolated tank in an open terrain. A more refined model should include the change in pressures as
wind moves on the surface of the shell; however, this refinement is outside the scope of the present
investigation.
3. Representative structure and computational model

The tank investigated in this paper is representative of typical tanks found in the United States,
and the geometry and dimensions are shown in Fig. 3(a). The same geometry has been employed
by the authors for the analysis of static buckling due to support settlement [13].
The tank is modeled by means of a finite element discretization using a general-purpose finite

element program [14]. Approximately 12,000 quadrilateral and triangular linear shell elements are
used to model both the cylindrical shell with a tapered wall and the conical roof. Additionally, the
rafters that support the conical shell are included in the model; they have the shape and
dimensions found in usual real tanks. Specifically in this research, a W8� 13 steel section
according to AISC code was used to model the rafters. The rafters were modeled with
quadrilateral linear shell elements and placed in a radial configuration supporting the conical roof
as shown in Fig. 3(b). The tank is assumed to be fixed at the base and has additional boundary
conditions at the top of the conical roof to simulate the presence of a central column by means of



ARTICLE IN PRESS

Fig. 2. Contours of wind pressures used in computations: (a) pressure distribution on the conical roof; (b) pressure

distribution on the cylindrical shell.

E.M. Sosa, L.A. Godoy / Journal of Sound and Vibration 283 (2005) 201–215204
constraints in the vertical displacements of the rafters, but allowing free translations in the
horizontal plane and free rotations. The junction between the cylindrical wall and the conical roof
is continuous.
Geometrical nonlinear dynamics analyses have been carried out to evaluate the response of the

tank to spatial and temporal variations of the pressure. For this kind of analysis, explicit
integration of the equation of motion is performed. The analysis calculates the response at time
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Fig. 3. Details of the tank considered in the analyses: (a) dimensions; (b) overview of conical shell and configuration of

the rafters.
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[t+Dt] using the values at time [t]. Very small time increments are necessary to make the algorithm
stable. The constitutive material is elastic, with modulus of elasticity E=2.06E+08kN/m2,
Poisson’s ratio n=0.3, and density r=7800kg/m3. Material damping has been considered in
parametric studies.
4. Nonlinear dynamic response

The dynamic buckling criterion employed in this work is due to Budiansky and Roth [15]. This
is a qualitative criterion and requires the computation of the transient geometrically nonlinear
response of the shell for different levels of dynamic pressures. The main variables involved in the
criterion are the dynamic pressure and a displacement (or a displacement component). Dynamic
buckling occurs if, for a small increment in the load, there is a large increment (at least one order
of magnitude) in the transient displacements at a given time. In other words, dynamic buckling
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occurs at the lowest pressure level that produces a fast transition from small to large transient
displacements. This criterion requires expensive computations, i.e. the geometrically nonlinear
transient response of a system with many degrees of freedom, and many trials are necessary to find
the dynamic buckling load. Other publications have adopted this criterion for the evaluation of a
dynamic buckling load in tanks (see for example Refs. [2,3] and those cited there).
First, let us consider a pressure distribution without any fluctuation, and with a 3 s time of

application of the load. The space distribution of pressures is shown in Fig. 2, with contour
values in kN/m2, and to increase the values of pressures at all points, a non-dimensional scalar
parameter l is used. The pressure configuration in Fig. 2 is for l ¼ 1: The relation between
velocity and pressure is that given by ASCE-7-02 [5]. Fig. 4(a) shows the nonlinear dynamic
response computed numerically. For l ¼ 2:50 and 2.51 the oscillations have small amplitude and
would vanish in the presence of material damping. The lowest value of l for which divergent
oscillations are computed is for l ¼ 2:515 (or wind velocity of about 64.4m/s), in which case there
are small amplitude oscillations up to a time t ¼ 2:16 s; and then the amplitude increases by two
orders of magnitude (increasing from 7 to 150mm). As the load is increased, i.e. l ¼ 2:52 or
l ¼ 2:60; the structure becomes unstable at earlier times. According to the criterion of Budiansky
and Roth, the dynamic buckling load is lD ¼ 2:515 and finding this value involves a sequence of
computations for different load levels. The deflected shape of the shell, as it becomes unstable at
the load lD; is shown in Fig. 4(b) at the onset of instability ðt ¼ 2:16 sÞ; and at an advanced
buckled state (t ¼ 3 s) in Fig. 4(c). The practical significance of the wind velocities computed
depends on the location of the tank, and these are not uncommon velocities in the Caribbean
region and in the eastern coast of the United States where hurricane winds can reach considerable
high values.
Second, to understand the influence of pressure fluctuations in time, let us consider the case

with Z ¼ 0:1 and t ¼ 0:25: The procedure to identify dynamic buckling is repeated and yields a
value of lD ¼ 2:34 (or wind velocity of about 61.3m/s), that is, a smaller multiplier than in the
first case. For a given value of Z, the value of lD is seen to be dependent on t, so that it becomes
important to understand the relation between lD and t.
The natural frequencies of the tank were computed with the same software [14] and are listed in

Table 1. For the present case, the higher period (lower frequency) is TN ¼ 0:3562 s; which is
smaller than the period of the excitation of both cases considered previously. Thus, a fluctuation
having Tf ¼ TN would be a bad situation for the structure, since there is coupling between the
frequencies of the load and the structure. The results of transient displacements for Tf ¼ TN are
plotted in Fig. 5(a), and the dynamic buckling modes at the onset of the stability and for an
advanced buckled state are given in Figs. 5(b) and (c), respectively. The dynamic buckling load
results in lD ¼ 2:34 (or wind velocity of about 61.8m/s), which is smaller than the value obtained
for the first pressure model but larger than the value for the second model.
A more complete picture of the problem may be obtained from a parametric study in which t is

changed and the transient response is computed. The results are plotted in Fig. 6 in terms of lD

versus t. First, it seems that the changes are not as drastic as one may imagine: the variations in lD

are of the order of 10% with respect to the value for a rectangular pressure impulse. Second, the
lowest values of lD are not necessarily associated to the lowest natural frequency of the shell. This
is so because the pressure pattern applied to the shell yields deflections that are not coincident with
the fundamental mode of vibration of the tank.
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Fig. 4. Tank under constant impulsive load. (a) Displacement versus time for node A: - - - -, l ¼ 2:50; — —, l ¼ 2:51;
—, l ¼ 2:515; —’—, l ¼ 2:52; —�—, l=2.55; —~—, l ¼ 2:60: (b) Buckling mode at the onset of instability; (c)

deflected shape in an advanced buckled state.
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All previous computations did not include damping, so it would be important to understand the
influence of damping on the response. Typical steel tanks have a 3% damping ratio. Results were
computed using Rayleigh damping, with a mass-proportional coefficient aR=1.848 for a
frequency in a cylinder mode of o25=4.9036Hz. For the constant pressure in time reported in
Fig. 4, the dynamic buckling load increased from 2.515 to 2.53, with a 0.6% increment. For the
fluctuating pressure of Fig. 5, the influence of damping was to increase the dynamic buckling load
from 2.34 to 2.36 (a 1.07% change). Because the influence is so small, it was decided to perform all
the computations using zero damping.
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Table 1

Natural frequencies of the shell

Mode f (Hz) T (s) Mode f (Hz) T (s) Mode f (Hz) T (s)

1 2.8077 0.3562 11 3.7563 0.2662 21 4.7698 0.2097

2 2.8134 0.3554 12 3.7784 0.2647 22 4.8082 0.208

3 2.9323 0.341 13 3.7801 0.2645 23 4.8694 0.2054

4 2.9349 0.3407 14 3.7853 0.2642 24 4.8974 0.2042

5 2.9642 0.3374 15 4.074 0.2455 25 4.9036 0.2039

6 2.9704 0.3367 16 4.107 0.2435 26 4.904 0.2039

7 3.1703 0.3154 17 4.3774 0.2284 27 4.9177 0.2033

8 3.1808 0.3144 18 4.416 0.2264 28 4.9191 0.2033

9 3.4571 0.2893 19 4.6372 0.2156 29 4.9591 0.2016

10 3.4661 0.2885 20 4.6706 0.2141 30 4.9638 0.2015
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The imperfection sensitivity of buckling loads has not been addressed up to now; however, it is
well known that imperfections play an important role in reducing the buckling load in static
problems of tanks [4]. Small geometric imperfections, with amplitude of the order of the thickness
of the shell, have been included in the analysis. The geometry of the imperfections was taken with
the shape of the displacement pattern at the onset of dynamic buckling, which is significant only in
the buckled region. For the imperfect shells, the nonlinear dynamic buckling studies under
fluctuating pressures were repeated for the same parameters (Tf=0.356, Z=0.1) used in Fig. 5,
and a summary is presented in Fig. 7. The reduction in buckling load depends on the maximum
amplitude of the imperfect shape, and for amplitude equal to the top shell thickness
(tmin=7.9mm), the reduction is about 30%. The shell, both under constant pressure in time
and under fluctuating pressures, is equally affected by imperfections.
5. Frequency domain analysis

A frequency domain analysis of the perfect shell has been carried out for two time variations of
the load: a rectangular impulse of 3 s and l ¼ 2:515; and a fluctuating pressure with l ¼ 2:34 and
Tf ¼ 0:3562 s (equivalent to an excitation frequency of 2.807Hz, that is, the lowest natural
frequency of the tank). The pressures chosen for the analysis are the lowest values for which the
shell buckles before the 3 s period.
The shell response computed for the duration of 10 s is shown in Fig. 8 at the location of

maximum radial displacements of the shell. For the rectangular impulse, the shell has large
oscillations when the load is removed and the oscillations continue in the absence of damping.
Under a fluctuating load, on the other hand, there are two clearly identified stages: small
amplitude oscillations when the load is applied until buckling occurs and oscillations about the
deflected shape once the load is removed.
The FFT for the complete history of displacements is shown in Fig. 9 (for a rectangular

impulse) and in Fig. 10 (for fluctuating pressure). In the studies reported in this section, the cut-off
frequency for Dt ¼ 0:03 s is f c ¼ 16:66Hz; so that a broad range of natural frequencies of the tank
may be taken into account. The natural frequencies have been computed from an eigenvalue
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Fig. 5. Tank with impulsive load and fluctuation with Tf ¼ TN and Z ¼ 0:1: (a) Displacement versus time for node A: –

– –, l ¼ 2:335;—, l ¼ 2:34;—�—, l ¼ 2:55; – � � –, l ¼ 2:60: (b) Buckling mode at the onset of instability; (c) deflected

shape in an advanced buckled state.
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analysis and are included in Table 1. However, the results have been plotted up to a frequency of
5Hz because for higher frequencies the amplitudes are negligible and do not provide additional
information.
Figs. 9(a) and 10(a) show the FFT of the response, while Figs. 9(b) and 10(b) show the FFT of

the acting loads. In both loading cases, the highest contribution to the displacement response is at
frequency zero with small peaks occurring for frequencies smaller than 0.5Hz in Fig. 9(a).
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Fig. 6. Critical dynamic load lD for different normalized load periods t ¼ Tf =T3 using Z ¼ 0:1; �, lDynamic; – – –,

lMean.

Fig. 7. Summary of analysis of sensitivity to imperfections of lD for Z ¼ 0:1 and Tf ¼ 0:3562 seg.
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The FFT of the response for constant pressure shows peaks for low frequencies that may be due
to the period of the oscillations after the tank has buckled. This period is 2.78 s (frequency
0.35Hz) and this is what can be observed for the third peak in Fig. 9(a). The FFT of the response
for the fluctuating pressure is shown in Fig. 10(a). Following buckling, the period of oscillation is
0.85 s (1.43Hz), for which the FFT shows a small peak showing a maximum value.
The possibility of coupling between the excitation (Figs. 9(b) and 10(b)) and the response (Figs.

9(a) and 10(a)) has been considered, but it seems that only for frequency zero there is a strong
coupling and there are only minor effects for higher frequencies. This suggests that even for the
case of fluctuating load, resonance does not occur.
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Fig. 8. Maximum response of node A recorded during 10 s for constant load: – – –, lD ¼ 2:515 and fluctuating load: —,

lD ¼ 2:34 (Z ¼ 0:1; Tf ¼ 0:3562 s).
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An alternative analysis was to split the response to distinguish between the prebuckling and the
postbuckling transient displacements, and to compute the FFT for each part separately. The
results are drawn in Fig. 11(a) for the rectangular impulse and in Fig. 11(b) for the fluctuating
load. Again, it may be seen that the maximum response is for zero frequency and that there are no
peaks with large amplitude for higher frequencies.
6. Conclusions

The time domain results computed in this research indicate that for a deterministic model of
velocity and pressure variations, a change in the period of oscillations does not produce a
significant change in the dynamic buckling load.
For small periods of pressure fluctuations, the dynamic buckling load is close to the value

obtained with a rectangular impulse of the same duration, and for periods longer than the natural
period of the structure the same situation occurs. The coincidence of the period of excitation with
the natural period of the tank does not induce large changes in the buckling strength.
The simpler pressure model based on a 3 s rectangular impulse yields dynamic buckling loads

only 5% higher than the worst situation considering pressure fluctuations. The small changes in
buckling load of short tanks due to a wide range of fluctuations seem to suggest that it would not
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Fig. 9. FFT of (a) response to a pressure constant in time; (b) constant load function (lD ¼ 2:515).
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be necessary to obtain a more refined record of wind velocities to account for wind changes at
intervals less than 3 s for this class of structures. The inclusion of Rayleigh damping in the model
did not change the results by more than 1% with a damping ratio of 3%; however, imperfections
were found to play an important role. For imperfections with the shape of the buckling mode, the
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Fig. 10. FFT of (a) response to a fluctuating load; (b) fluctuating load function (lD ¼ 2:3�; Tf=0.356 seg, Z ¼ 0:1).
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dynamic buckling load was reduced following a pattern similar to static buckling problems, with
reductions of 30% for imperfections of the order of the thickness. This effect, however, is not due
to the fluctuating load and is associated with the sensitivity of the shell itself, so that the same
sensitivity is detected for tanks under pressure constant in time.
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Fig. 11. FFT of the response in the buckled state considered separately: (a) constant load, high amplitude oscillations;

(b) fluctuating load, high amplitude oscillations.
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The results computed in the frequency domain illustrate the close similarity between the FFT of
the load and the response, for both rectangular impulse and fluctuating load. In all cases, the
peaks in the FFT of load and response occur for frequency zero. For higher frequencies, within
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the range of the lowest natural frequencies of the tank, the peaks have small amplitudes so that
resonance may be ruled out as a likely effect.
The results discussed previously indicate that dynamic effects do not dominate the response for

short tanks, so that static buckling models may provide a reasonable approximation to the
buckling strength of the shell under deterministic wind simulations.
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